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I. INTRODUCTION 

More than three decades ago the first nuclear reactor achieved a 

critical fission chain reaction beneath the Stagg Field football 

stadium at the University of Chicago. Since that time ther e has been 

a worldwide effort to harness the enormous energy contained within the 

atomic nucleus for the peaceful use of nuclear energy. This has led 

to the development of numerous types of nuclear reactors for electrical 

power production. 

Electrical power production, previous to the discovery of the first 

critical chain reaction until today, has depended chiefly upon coal and 

oil as fuel sources. Worldwide demands on coal and oil fo r energy 

production have consumed large amounts of energy sources once believed 

inexhaustible . The advent and development of nuclear ener gy have 

lessened the severity of the rate at which coal and oil are being con-

sumed, thus " buying time" to develop new energy sources . Many think 

that our nuclear fission fuels also stand the chance of becoming 

critically short if ways of either renewing or discovering alternative 

ener gy sources are not found . 

Billions of dollars are being spent on research programs to in-

s ure that the world does not "freeze to death in the dark". These 

programs are investigating fast breeder reactors, controlled ther mo-

nuclear fusion reactors, geothermal power, solar power, and many 

others. Most technologically advanced nations have recognized the 

nuclear option and have placed it high on their prior ity list . Current 
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trends in the technology of power production suggest the fast breeder 

reactor s wil l provide an economical energy source in the near future . 

The liquid metal fast breeder reactor (LMFBR) concept is to fuel 

. h 239p d 238 d h "b d" d d . 1 the reactor wit u an U an t en ree or pro uce irect y 

239p u, the fuel needed for future operations. A typical breeding 

ratio (BR) for a LMFBR would be BR=l . 2-1.5, where BR equals the ratio 

of the number of fissile atoms produced to the number consumed (1). 

This BR would lead to a doubling time of approximately seven years. 

Doubling time is the time to double the number of fissile atoms . Since 

breeder reactors produce more fuel than is consumed, one can see that 

they may help meet the world's demand for a renewable ener gy source . 

The LMFBR has been in existence since 1951. Since t hat time 

numerous engineering problems have been solved; however, there is 

al ways the question , " How can the sys tern be improved?" Researchers 

and engineers are constantly striving to increase the breeding r atio , 

thus shortening the doubling time . This is extremely import ant from 

an economical standpoint. Increasing the breeding ratio means making 

maximum use of neutrons toward the production of new fissile atoms 

( . 239p ) i . e . , u . Therefore, a need exists for coolants and structural 

materials that will not thermalize or otherwise adversely affect the 

fast neutron population . Structural materials would have to be kept 

to a minimum without endangering their ability to withstand the stresses 

and envir onment within the reactor core . One particularly important 

consideration is the effect of neutron irradiation in producing void 

s welling in claddi ng and duct materials . 
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Fast breeder reactors' cladding and duct materials will be ex-
23 2 posed to fast neutron fluences of (2-3)xl0 n/cm (E>O . l MeV). These 

fluences would induce approximately 18% swelling at peak swelling 

temperatures in 20% cold worked 316 stainless steel (2). (316 stainless 

steel is currently being used as the cladding and duct material in 

experimental fast breeder reactors.) To find ways of controlling void 

swelling , conunercial and candidate structural materials need to be 

exposed to fluences expected in commercial fast breeder reactors. At 

the Experimental Breeder Reactor (EBR-11), a fluence of l023n/cm2 

would take between 2-3 years . Valuable research time and money would 

be consumed in this period. Therefore, a more economical means of pro-

ducing the same amount of radiation damage would be very useful . 

A possible solution to this dilenuna is heavy ion bombardment. As 

can be seen below, heavy ion bombardments can produce 100 displacements 

per atom (dpa) in approximately 5 hours . Thus, damage rates with heavy 

ions (20 dpa/hr) are much larger than thos e in fast reactors (0 .0035 

dpa/hr). Heavy ion bombardment has proven to be a valuable technique 

toward contracting the scale for the study of void swelling in fas t 

reactor structural materials . 

While swelling, void densities, and void diameters were found to 

be similar both in ion and fast neutron damaged commercial Fe- Cr- Ni 

alloys (3), other evidence indicates that the techniques used to 

es t ablish these similarities are limited to only certain alloys . As 

an example, Rowcliffe et al . (4) found that the precipitate micro-

structure formed in 316 stainless steel during neutron irradiation 
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was unstable during subsequent ion bombardment; consequently, the 

relative swelling rates at various temperatures were not correctly 

simulated . Although differences exist, there is still a strong con-

tention that ion bombardment techniques should be used for the initial 

evaluation of the effects of irradiation induced defects in candidate 

cladding and duct materials. 

Candidate LMFBR cladding and duct alloys Fe-26%Ni-9%Cr1 (here 

designated ALl) and Fe-35%Ni-12%Cr (AL2) are among those being con-

sider ed for use in connnercial fast reactors (5). Resear ch on these two 

alloys consists of mechanical property studies and the effects of fast 

neutron irradiation. The effects of minor additions of rare-earth 

metals upon structural steel for reactor applications have been 

published (6, 7, 8) . These publications deal primarily with changes 

in mechanical and corrosion properties upon adding rare-earth elements. 

Very little, if any, published research has been done on the effects 

of additions of rare-earth metals on void swelling . In general, making 

mino r alloying additions enhances certain properties while degrading 

others. The ideal condition would be the enhancement of all properties , 

but this is rarely the case. A desired balance must be struck . As 

an example, in austenitic stainless steels, swelling varies systemati-

cally with the Cr and Ni content (9) . Generally as the Ni content 

increases, swelling decreases for a given Cr concentration and as the 

Cr content increases, swelling increases for a given Ni concentration. 

1unless otherwise indicated, concentrations are given in weight 
percent. 
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Ni is an austenizer and with proper heat treatment pr ovides strength 

and duct i li t y in steels . Cr is a ferri tizer and p r ovides high 

corr osion resistance t o steels . Considering these and other features , 

where is the line drawn? This question is answered based on the 

environment in which t he material is used . The same type of decision 

must also be made toward minor alloying with rare- ear th metals. 

Published works on high- temperature oxidation of Fe-Cr- Y alloys 

imply that yttrium additions to austenitic steels increase oxidation 

resistance (6) . Also , it is anticipat ed that yttr ium additions 

(~1.0 wt . %) to 20/25 Nb steel lend greater adhesions of surface oxide . 

Left unanswered are t he effects of smal l yttrium additions (0 . 1- 0 . 2%) 

upon void swelling i n austenitic steels . This unknown will be 

addres s e d t o the ALl and AL2 alloys in t he remainder of t his thesis . 
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II. VOID SWELLING 

A. Introduction 

The study of void formations due t o neutron irradiation is a 

relatively new field of research. Voids were first observed and re-

ported by Cawthorne and Fulton in 1966 (10). This detection of voids 

prompted ntunerous studies to define the mechanisms by which voids are 

produced. Based on these investigations, researchers began the tedious 

process of trying to define models by which radiation induced void 

swelling may be predicted (11). A review of the advances in void 

swelling theory is given by Mansur and Yoo (12) in which are discussed 

(a) the development of a cascade diffusion theory, (b) the effects of 

mobile helium on void growth, and (c) spatial variations in swelling 

during ion bombardment . This publication along with other works by 

Johnston~ al . (9), Wiedersich (13), and others have provided designer s 

with information by which void swelling may be controlled. 

One of the important effects of radiation damage in fast reactor 

structural metals is void swelling. The designer must compensate for 

metal swelling by increasing the distance between fuel pins to provide 

adequate coolant flow and, more importantly, the freedom of control 

rod movement . An increase in fuel pin spacing leads to a lower 

breeding ratio and power density, which adversely affects the economics 

of power production employing fast breeder reactors. Factors to be 

considered in the design of fast breeder reactors based on swelling in 

reac t o r metals have been published by Huebotter and Bump (14). 
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B. Defect Clustering, Void Formation, and Swelling 

Steady- state defect concentrations (i.e., vacancies and inter-

stitials) may be obtained by reaction-rate equations analogous to those 

used in chemical kinetics (13). These equations were extensively used 

by Damask and Dienes in the development of the annealing theory of 

radiation-induced point defects (15). Point defects were assumed to 

be produced at random within the solid. They moved by a random-walk 

process through a crystalline material until they were annihilated by 

recombination with an opposite type of defect (i.e., vacancy with 

interstitial) or by annihilation at fixed lattice sinks, such as dis -

locations , voids and grain boundaries . The effects of spatial vari-

a t ions and defect clustering in cascades are neglected for simplicity. 

A more detailed account of void swelling including these fac t ors has 

been published (12) . These simplifications, however, do not i nduce 

errors that would make the Damask and Dienes analysis inval id (13) . 

The rate of change of the number of vacancies, dN /dt, is given 
v 

by Wiedersich (13) as : 

dN v 
dt = N pv v N a C v v v v [l] 

The subscripts v and i indicate vacancies and interstitials, respec-

tively. N is the total production rate of vacancies, and v and v. pv v 1 

are jump frequencies . Cv and Ci are atomic fraction, Nv and Ni are t he 

total number of vacancies and interstitials and a and a. are the 
v 1 
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geometrical factors corresponding to the recombination volllllle . Also, 

P is the probability that a single jump of a vacancy results in v 

annihilation at a sink . v N a C. = the loss rates of vacancies caused v v v l. 

by vacancies jumping into av sites around an interstitial . viNiaiCv 

the vacancy loss due to recombination of moving interstitials with 

stationary vacancies. v N P = vacancy loss by annihilation at sinks . v v v 

For convenience and symmetry, equation [l] is divided by the total 

number of lattice sites yielding 

dC v = n dt pn 
[2] 

where all concentrations are now in atomic fractions, and the production 

rate, n , is in atomic fractions per unit time . Equation [2] can be pv 
modified to express changes in interstitial concentrations by inter-

changing v and i s ubs cripts. The total probability, P , is different v 

from Pi because of differences in interactions of interstitials and 

vacancies with various sinks . 

Wiedersich (13) also gives an expression similar to [2] which 

includes the thermal equilibrium concentrations of vacancies and inter-

stitials, cth and cth as follows : 
v i 

dC 
v (v + )(cc cthcth)-v P (C -cth) at = n- i ai vvav v i - v i v v v v 

and a similar expression for dCi as follows: 
dt 

[3] 
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[ 4] 

where: th is the radiation induced defect n = n -n pv pv 
production rate . 

(v a + v.a.)(C.C - c1thcvth) is the net loss of defects by v v 1 1 1 v 
recombination . 

vvPv(Cv - C~h) and viPi(Ci - C~h) are the net losses t o sinks 

of vacancies and interstitials, respectively . 

When steady-s tate conditions are reached, the time derivatives in 

equations [3 ] and [4] are zero . The difference of the equations yields 

a relationship between the steady- state interstitial and the vacancy 

concentrations 

v P (C v v v 
[5] 

By letting (C. -C~h) = 6C. and (C -Cth) = 6C the rate of annihila t ion 
1 i 1 v v v ' 

a t sinks of r adiation- produced defec ts can be given by 

[6] 

Equation [6] implies that , during steady-state, equal numbers of 

interstitials and vacancies must be annihilated at sinks ; however, 

steady-state conditions are rarely encountered. Sinks present within 

the material exhibit a bias for capturing one t ype of defect . The 

most obvious sink to discriminate between vacancies and interstiti als 

is dislocat ions . Dislocations interact more strongly with inter-
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stitials because interstitials distort the surrounding lattice mo r e 

than vacancies do. 

The differences in interactions of interstitials and vacancies 

(the bias) for the different types of sinks are taken into account by 

k k assigning individual annihilation probabilities P. and P , where the 
1. v 

superscripts identify the type of sink while the subscripts identify 

the type of defect. The total loss rates of vacancies and inter-

stitials at sinks (last terms in equations [3) and [4)) can be expanded 

R =" p /:J.C v /:J.C pv + v /:J.C I: pk 
v v v v v v v v v k/:vv 

[ 7) 

and R. v. p. /:J.C. v 
"i/:J.Ci I: p~ v.l:J.C.P + 

1. 1. 1 1. 1 1. v kfvl. 
(8) 

where the loss rates to voids are given on the far right sides . Sub-

traction of the last two terms of equations [7) and [8] gives 

"i· /:J.C1. I: p~ 
k/vl. 

[9) 

which is the net rate of precipitation of interstitials at all sinks 

other than voids. Fractional volume increases, /:J.: , in materials are 

caused by excess interstitial precipitation, not void formation (13) . 

In fact , small volume increases are expected when interstitials have 

enough mobility to be annihilated at sinks and vacancies do not . 

Radiation-induced displacement concentrations cause significant 

and lasting microstructural changes in me tals. Void swelling is one 

s uch important change that occurs during elevated-temperature irradi-
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ation. In addition to displacement damage, a more complex nucleation 

problem is encountered as a result of the (n, a) reaction. The in-

soluble transmutation product, helium, precipitates into void embroys . 

Helium can increase the void-nucleation rate dramatically when the 

helium flux to void embryos is equal to or larger than the vacancy 

flux (13). 

C. Damage Produced by Ion Bombardment 

In the context of LMFBR's, the economics of nuclear power pro-

duction requires that the fuel and related cladding duct material remain 

in service for fluences in excess of 1023 neutrons/cm2 (i . e . , exposed 

to fluxes of about 1016 neutrons/cm2 sec for a period of 1 year) (16). 

In currently available irradiation facilities it takes in excess of one 

year to achieve these fluences. There is, therefore, a great need t o 

devise irradiation tests that can produce the required irradition 

damages in a short period of time (such as days). 

Heavy- ion bombardment of materials has proven to be such a tool 

(16, 17, 18) . Heavy- and light-ion beam currents with energies from 

approximately 1 to 10 MeV can be obtained in accelerators . The initial 

ener gy of ions is dissipated in solids at short ranges, typically 

shorter than 10 µm. Incident ion energies are normally in the MeV 

range; thus, the principal energy loss mechanism of the incident ion at 

a given depth of penetration is electron excitation (16) . The atomic 

stopping power absorbs the remainder of the ion's energy . 
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The electronic stopping power is given by the following equation 

(16) : 

(dE) 
dx e 

},i KE , K [10] 

where : E is the incident particle energy, x is the path length, the 

subscript e refers to the electron, N is the density of the target 
0 -3 

particles in (A) , and ~ is the atomic number of the atoms of the 

target material . The equation for the atomic stopping power i s given 

by the following (16): 

T 
dE = ~ m crT (E T)dT dx ' T 

[11] 

0 

where T is the energy transferred to the lattice atom, T is the maximum m 

energy transferable to a lattice atom, T is the minimum energy trans-o 

ferred to the lattice atom and cr(E,T)dT is the differential cross 

sect ion for transferring energies between T and T + dT to a lattice 

atom by an incident particle of energy E. Integration of the electronic 

stopping power equation (eg. [10]) gives the ion energy at depth x 

E(x) = [(E )~ -~Kx] 2 
0 [12] 

where E(x) is the energy of the bombarding ion at depth x and E 
0 

is the 

initial energy of the bombarding ion . 

Although the question of how and where the impinging ion ' s energy 

is lost is important, the rate at which displacements are produced in 

reactor structural metals is of greater importance in comparing the 

effects of neutron and ion irradiations . This comparison is dealt with 

in detail by Mansur and Yoo in (12) and Mansur in (19). 
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An expression for the rate at which lattice atom displacements 

at depth x are produced is given by Olander (16) as follows: 

=NI ("' AE a(E,T) v(T)dT, Displ;ced Atoms 
..JTd cm sec 

[13] 

where N is the atom density of the target particle, I is the ion current 

density or ion flux in units of ions/cm2 sec, x is the path length, Td 

is the threshold displacement energy, v (T) is the number of displaced 

atoms for each collision that produces a primary knock-on atom of 

energy T, Rd(x) is the lattice atom displacement rate at depth x, and 

A is given by 

A 

where M1 and M2 are the masses of the incident particle and target atom, 

respectively . 

Multiplication of Rd in equation [13] by the irradiation time and 

division by the lattice density, N, gives the number of displacements 

per lattice atom for irradiation to a given fluence (It). 

Cd• number of displacements/atom• lt~dAE o(E,T) v(T)dT [14] 

It is seen from equation [14] that displacement concentrations 

depend on the ion beam intensity (ion flux) and the duration of exposure 

to the ion beam. For Ni+ ions, beam intensities on the order of 1013 

ions/cm2 sec can be achieved (16) . Figure 1 shows that the displacement 

f 5 M V N.+ · o-2 I rate or e 1 ions ranges up to about 1 dpa sec. By comparison, 

the calculated displacement rate for a fast-neutron flux of ~1015 
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2 4 6 8 10 12 
01 STANCE NTO SOU 0, I'-• 

Figure 1 : Displacement-damage effectiveness as a function 
of penetration depth for ions impinging on nickel . 
[From Ref. (16)). 
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2 -6 neutrons/cm sec is above 5 x 10 dpa/sec. This comparison shows that 

the same number of displacements per atom are produced in about 5.2 

hours of 5 MeV nickel ion bombardment as is produced by approximately 

one year of 14 MeV neutron irradiation . 

As a result of these time savings and the ability to simulate, in 

some respects, fast neutron irradiation damage by ion bombardment, 

studies in LMFBR candidate cladding alloys ALI and AL2 were conducted 
56 2+ by use of 4 MeV Fe ions. The simultaneous implantation of 0.4 

4 + MeV He ions was also used to simulate the helium build-up due to the 

(n, ex) reaction. 
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III. EXPERIMENTAL PROCEDURES 

A. General 

The Fe-Ni-Cr alloys were supplied by The Hanford Engineering 

Development Laboratory (HEDL). The chromium and nickel concentrations 

of the starting alloys are given in Table 1. Sheet samples were pre-

pared and bombarded by 4 MeV 56Fe2+ ions only and by a dual beam of 

4 MeV 56Fe2+ and 0.4 MeV 4He+ ions. Portions of these alloys were 

doped with 0.1 wt percent of yttrium to study its effects upon void 

swelling. Each material (ALl and AL2, doped and undoped) was irradiated 

at several temperatures to a single displacement concentration of 100 

dpa. 4 + . The 0.4 MeV He ions were simultaneously implanted at a rate of 

0.7 appm per dpa. This is in close agreement with heliwn production 

rates found in like alloys (i.e., 316SS, PE-16, INCONEL -600) exposed 

to the EBR- II environment for one year (20). 

B. Sample Preparation 

Samples of ALl and AL2 were taken from the bar stock supplied by 

HEDL and arc melted into doped (0.1 wt % Y) and undoped 60 gram fingers 

approximately 4 inches long and 0.5 inches in diameter. After arc 

melting, each finger was weighed and ultrasonically cleaned in a 

solution of 95 ml HN03 and 5 ml HF to remove any surface contaminants. 

The fingers were given a homogenizing anneal for 16 hours at 1150°C in 

a vacuum of 10-6 torr . The fingers were then sectioned according to 

Figure 2. It is important to section the fingers after the homogenizing 
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Table 1 . Chromium and nickel concentrations of the starting alloys 
as recorded on the Certificate of Test for as-received bar 
stock 

Cr 
Ni 

D21 

8 .68 
25. 71 

D68 

11. 83 
35 .21 

anneal to eliminate or minimize any existing component concentration 

gradient within the material. Combustion technique and wet chemical 

analyses were conducted on piece #6 of each sample to determine carbon 

and yttrium content (Table 2). 

Table 2. Wet and combustion chemical analysis of piece #6 (see Figure 
2) undoped and doped ALl and AL2 samples af ter a homogenizing 
anneal for 16 hours at 1150°C in a vacuum of about l0-6 torr 

Sample c y 

ALl 0.0468 0.00 

ALl + 0.1% Y 0.0480 0.07 

AL2 0.0350 0 . 00 

AL2 + 0.1% Y 0.0357 0 . 09 
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3 5 7 9 
4 6 8 II 

Figure 2: An example of an arc melted finger cutting 
schedule for AL 1 and AL 2 alloys. 
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Piece #9 of each sample was cold rolled to sheet stock approxi-

mately 0.02 inches thick. This thickness was sufficient to provide 

enough extra surface material for polishing to an acceptable finish 

leaving 0.014 inches thickness (0.014 inches is the optimum thickness 

for the sample holder used during ion bombardment in ORNL's Van de 

Graaff dual beam accelerator). Sheet stock preparation involved a 

series of cold rolling, and between each rolling an intermediate 
-6 recrystallizing anneal for one hour at 1150°C in a vacuum of about 10 

torr. Care was taken during the rolling process not to have area re-

duction in excess of roughly 30 percent in order to avoid cracking. 

In order to determine a final annealing time and temperature, piece #5 

of each sample was reduced to sheet stock exactly as described above. 

One centimeter squares were cut from the sheet stock. One square from 

each sample was annealed for seven hours at 1150°C in a vacuum of about 
- 6 10 torr . Each sample was then electrolytically polished for one and 

one-half minutes in a 6% perchloric acid and 94% methanol alcohol 

solution at - 70°C with 50 volts applied. After polishing, each sample 

was electrolytically etched in a solution of 10% oxalic acid and water 

for about one minute with 6 volts applied. Micrographs were prepared 

from each annealed and as-rolled sample. It was found that the final 

anneal time and temperature provided full recovery and recrystallization 

without significant grain growth (Figure 3). 

Discs 1/8 inch in diameter were punched from the 20- 22 mil-thick 

sheet stock. The discs were ultrasonically cleaned in acetone, rinsed 

in distilled water, and again ultrasonically cleaned in methyl alcohol 
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Figure 3: Micrographs of ALl and AL2, undoped and doped 
samples showing the results of the final anneal 
for 7 hrs at 1150°C in a vacuum of lo- 6 Torr. 

(a) cold rolled ALl (lOOX) 

(b) ALl annealed at 1150°C for 7 hrs 
after cold rolling (lOOX) 

(c) ALl + 0 . 1 % Y annealed at 1150°C 
for 7 hrs after cold rolling (lOOX) 
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Figure 3: (continued) 

(d) AL2 annealed at 1150°C for 7 hrs 
after cold rolling (lOOX) 

(e) AL2 + D.l % Y annealed a t 1150°C 
for 7 hrs (lOOX) 
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and blown dry. An anneal for one hour at 1150°C in a vacuum of about 

-6 10 torr was conducted to provide recovery and recrystallization from 

lattice damage that might have been induced while punching. The disc 

samples were segregated into groups of ten discs according to sample 

type and cemented to a polishing block (Figure 4). The bonding cement 

(adhesive) used to fix the samples to the polishing block was Lakeside 

70 Mounting Cement marketed by Buehler Ltd. The polishing block 

dimensions and material were selected to provide enough weight or down-

ward force for polishing without hand manipulation. The discs were 

polished on one side with 600 grit carbon-silicon paper using a Buehler 

polishing apparatus (catalog #151153) until flat (0.002-0.003 inches 

removed). The samples were ultrasonically cleaned in distilled water 

(acetone and methyl alcohol will soften or remove the adhesive) to 

remove any foreign particles left by the 600 grit paper before advancing 

to the next polishing stage. The next stage was conducted by placing 

the polishing block with samples attached, face down, in a Syntron 

polisher employing a wax lap and Linde A (0.3 µm, Al203) polishing 

compound for four hours (or until abrasions left by the 600 grit paper 

were removed). After the Linde A polishing, the specimens were removed 

from the polishing block, ultrasonically cleaned in distilled water, 

turned polished-side down, and remounted on the polishing block by the 

method previously stated. The sides of the discs that have thus far 

been polished (the back sides) will be placed against the thermalizer 

block of the target assembly in the Van de Graaff accelerator. Polish-
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mounting cement 
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~--------

,--- I I 8 11 disc 
samples 

Stainless Stee l 
Poli sh ing B lock 

Figure 4 : The arrangement in which samples we placed on 
a polishing block for surface preparation of 
samples to be used for ion bombardments . 
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ing the back side of the sample provides good thermal contact for 

heating the sample during elevated temperature ion bombardment. 

To polish the front side (side to face the ion beam), the processes 

of polishing with the 600 grit paper and Linde A compound were repeated. 

After polishing with the Linde A polishing compound, the polishing block 

and samples were ultrasonically cleaned in water to remove any remaining 

Linde A compound, then placed face-side down in the Syntron polisher. 

For this polishing Linde B (0.05 µm, Al203) polishing compound and cloth 

lap ("microcloth") were employed for about 20 minutes. Linde B compound 

should be used for the shortest period of time possible to remove the 

abrasions left by the Linde A compound. Extended use of Linde B compound 

on these alloys results in unwanted surface relief. The objective of 

polishing samples for ion bombardment is to provide as smooth and flat 

a surface as possible, preferably optically smooth and flat so as not 

to produce geometries that are unsuitable for making swelling analyses. 

This is extremely important when the method of swelling analysis includes 

the use of an interferometer or profilometer instrument. 

One might suggest a slight electropolish to remove the last little 

bit of cold work left by the Linde B compound, thus providing a smoother 

surface. This suggestion was tried on these alloys and resulted in 

unsatisfactory surfaces. The electropolishing consisted of removing 

2-3 µm of surface material by a 10 sec polish at 20°C and 275 milliamps 

of current in a 1 to 7 parts sulfuric acid-methanol solution. Because 

these alloys are two-phase alloys, electropolishing only enhances the 

unwanted surface relief. Surface topography after each polishing step 
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is exhibited in Figure 5. Electropolishing techniques suggested by 

Lee and Rowcliffe (21) would prove useful for post-ion bombardment 

analysis, but are of little use for pre-bombardment electropolishing 

when final analysis of swelling is to be done by interferometer or 

profilometer instruments on two-phase alloys. The effects of electro-

polishing an ALl sample are seen by compariing Figure SC to Figure 6. 

Once all surface preparations were complete, each sample was 

examined in an optical microscope for any material defects that would 

adversely affect the uniformity of the ion beam penetration (i.e. , 

cracks, scratches, imbedded particles from polishing compounds, bonding 

cement, etc.) . Satisfactory samples were placed in suitable containers 

fo r i ns uri ng ease in i dentification and protection f r om an environment 

that might otherwise damage the sample. 

C. Ion Bombardment 

All t he suitable samples of ALl and AL2, doped and undoped , were 

bombarded at the Oak Ridge National Laboratory (ORNL) with heavy-ions 

only and with heavy- ions and helium simultaneously. The "dual beam" 

technique or irradiation is used because fast neutrons within reac t ors 

not only produce displacements, but also helium as a result of (N, a) 

reactions . Analytical investigations (17, 22) have shown that void 

growth is affected by the presen ce of helium. This implies that heli um 

must be implanted into the metal either prior to or during heavy-ion 

bombardment to simulate properly the effect of neutron irradiation . 

The Van de Graaff dual beam accelerator (Figure 7) was developed 

for the purpose of more closely imitating the effects of neut r on-
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Figure 5 : Appearance of the surface of a AL! sample after 
each stage of polishing with various polishing 
compounds. 

(a) AL! 1/8" disc polished with 600 Grit 
carbon-silicon paper (SOX) 

(b) AL! 1/8" disc polished for 4 hrs with 
Linde A polishing compound following 
the 600 Grit polish ( 400X) 

(c ) AL! 1/8" disc polished for 20 min with 
Linde B polishing compound following 
the Linde A polish (400X) 
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Figure 6: ALl 1/8 inch disc sample electropotished fo r 
10 sec . at 20°C and 250 MA . of cur r ent in a 
solut ion of 1 to 7 parts sulfuric acid and 
me thanol following the Linde B polish (50x) . 
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Figure 7 : View of the upright tank and enclosed elec trical 
component s of the heavy- ion Van De Gr aaff accelerator 
at ORNL . 
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induced damage in reactor materials . The facility at ORNL can simul-

taneously bombard samples with heavy ions and light ions like helium. 

The ion beams can be made to impinge upon nine target samples at the 

same time in a continuous or pulsed (chopped) mode (17). Sample 

temperatures can be accurately measured and the target environment 

monitored with a residual gas analyzer. Helium penetrations take place 

over a broad depth by varying the helium ion energy . An overall view 

of the accelerator beam lines is given in Figure 8. For more detailed 

information concerning the ORNL dual beam Van de Graaff accelerator, 

the reader is referred to references (17) and (18). 

Of primary interest at this point is the damage chamber (item K, 

Figure 8) and rela t ed equipment . An expanded view of the chamber is 

shown in Figure 9 . The targe t assemblies (Figure 10) have six indi-

vidual target heater modules, large bellows, which permits 230 mm of 

linear motion, and all the power and instrumentation feed- throughs . A 

precision machined bed attached to the chamber body is used for aligning 

any desired target with the intersection point of the two charged beams . 

The heavy ion and light ion beams enter the chambe r by separate ports 

with a 15° angle between them. Other ports in the chamber permit 

illumination and visual observation of the samples during bombardment . 

Figure 11 gives a view of a target assembly with each of the six 

specimen holde r-heater modules (item a) in progressive stages of 

assembly . The heaters are dispenser cathode triode-type Y646B electron 

gun assemblies (i tem b) . The electron guns operate with the cathode 

drawing about 10 milliamps at 600 to 800 volts negative to ground , 
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@ C N VAN DEGRAFF ACCELERATOR (4 MV) 
@AN ACCELERATOR (400 kV) 
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Figure 8: Schematic of the two accelerators and their 
respective beam lines to the Radiation Damage 
Target Chamber (lower left). (From Ref. 18) 
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Figure 9: Layout of the Radiation Damage Target Chamber of the 
Van de Graaf f dual beam accelerator at ORNL. 
(From Ref. 18) 
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Figure 10: Target assembly with electrical feed through 
components of the Van de Graaff dual beam accelerator. 
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Figure 11: Target assembly for the Van de Graaff a ccelerator 
at ORNL in various stages of assembly . 
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while the specimen assembly at gr ound potential acts as the 

anode. 

Temperature control is gained from signals from ei ther of two 

1 mm diameter sheathed Chromel-P-Alumel thermocouples (item C, Figur e 

11) which are spring loaded into 6 mm deep holes in the edge of each 

thermalizer block. A third thermocouple output using 0.13 mm diameter 

Chromel-P-Alumel wires spot welded near the edge of a specimen per 

target holder-heater (item d, Figure 11) is for monitoring the samples ' 

surface temperatures. The temperature control system responds rapidly 

to temperature changes and is very stable. The stability and accuracy 

of temperature output by the system can be maintained to +1°C for 

hours (18) . 

Ion beam control and diagnostics are achieved by use of the equip-

ment and instrumentation shown in the block diagram of Figure 12 . The 

final ion beam dimensions are established by a pneumatically driven 

gate valve followed by a 11 . 0 X 11.0 mm fixed square aperture (18). The 

ion beam uniformity and intensity are monitored during each "bombardment 

run" by a nine-hole miniature deep Faraday Cup Array (Figure 13) . The 

deep Faraday cups (DFC's) are positioned in front of the target holder 

in the beam line every 10 minutes for approximately 20 seconds. The 

infor mation gathered by the FDC's is sent to an ion beam c urrent inte-

grator which assists in the maintenance of a bombardment run log, 

listing beam currents and cumulative displacement concentrations for 

each of the nine targets being bombarded. Once pre-programmed displace-
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Figure 14: Loading jig for specimens to be bombarded by ions 
in the Van de Graaff accelerator at ORNL. 
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ment concentration levels are reached, the ion beam is automatically 

terminated. 

Concerning the loading of samples into the target assemblies, 

Figure 14 shows the loading jig and related components for loading 

1/8 inch or 3 mm disc samples into the target holder. First, the face 

plates (item a) and thermalizer blocks (item f) are ultrasonically 

cleaned with methyl alcohol. The face plate is placed beam side down 

in the loading jtg. If the 0.001-inch thick molybdenum bar masks (item 

b) are used to produce a post-bombardment step height between the 

shielded and unshielded regions, the masks are loaded into the recesses 

with the bar oriented vertically. The vertical orientation prevents 

undue shadowing of the light ion beam that impinges upon the target 

at a 15° angle. Next , a crushable platinum wire ring (item c) , usually 

0.005 inches thick, is gently pushed into the recess with a rod (not 

shown) of like diameter. To reduce adherence of the platinum wire to 

soft samples of materials being irradiated at high temperatures 

(>600°C) , a 0.002-inch-thick stainless steel washer with an oxidized 

surface finish (item d) is placed on top of the platinum wire. Samples 

(item h) are now loaded face down into the recesses. The sample to 

whose face the thermocouple has been welded is loaded in the upper 

right recess . Next, the thermalizer block (item f) is carefully placed 

smooth-side down over the samples without dislodging them. Applying 

the hold down clamp (item g) and rotating the swivel stage upside down, 

an inspection of the samples is conducted to insure masks are oriented 

properly, thermocouple leads are properly situated and samples are 
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securely seated. A clamping force of about 550 N (124 lbs) is applied 

by a modified toggle-clamp tool to partially compress the platinum wire 

gasket , eliminating any looseness due to small sample- to-sample 

variations in thickness. Finally, the four 2-56 socket-head s crews 

(item i) are inserted in the target holder and tightened to maintain 

the clamp pressure. 

The target holders are then placed in the target assembly as shown 

in Figure 11. Each target holder within the target assembly is desig-

nated by a station number 1 through 6 (usually station 1 is to the far 

right and numbers increase toward the left). Individual samples in 

each target holder are designated by a matrix position as shown in 

Figure 15. Accompanying Figure 15 is Table 3 correlating samples to 

matrix position. This system of identification is needed to aid in 

post-bombardment sample identification and analysis. 

The target assembly (Figure 10) is inserted into the target 

chamber (item k, Figure 8) and is sealed and evacuated. The chamber 

can be pumped to a base pressure of 9 x 10-7 Pa (7 x 10-9 torr) while 

no sample heating is being conducted. While bombarding at elevated 

-5 temperatures, the pressure normally increases to the low 10 to high 
-6 -7 8 10 Pa (low 10 to high 10- torr) range (18). The electron guns , 

samples, target assembly, etc. are normally "conditioned" (out-gased) 

prior t o ion bombardment. Conditioning normally takes from less than 

5 min to 30 min depending upon the length of time the electron guns 

are exposed to air during loading and unloading. After a suitable 
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Figure 15 : Beam view of target holder and face plate used 
in ORNL ' s dual beam Van de Graaff accelerator. 
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vacuum is obtained and the irradiation temperature is reached, ion 

bombardment may begin . 

Table 3. Matrix positions of ALl and AL2 doped and undoped samples 
with respect to positions depicted in Figure 15 

Specimen Matrix Position 

ALl 31 and 32 

ALl + 0.1% Y 22 and 23 

AL2 11 and 12 

AL2 + 0 . 1% y 13 and 21 

ALl + 0 . 3% Y-with thermocouple 33 
attached (not used for swelling 
measurements) 

ALl and AL2 undoped and doped samples were irradiated under the 

following conditions: 

Temperature (°C): 500, 577, 653, and 730 

Vacuum: 

Ions : 

-8 10 torr 

First sample set bombardment - 4 MeV 56Fe2+ only 

Second sample set bombardment - 4 MeV 56Fe2+ with 
simultaneous implantation of 0 . 4 MeV 4He+ ions 
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D. Analysis of Swelling 

Procedures as outlined by Gessel (2), in which a profilometer was 

used to measure step heights, were originally attempted to determine 

step heights . Gessel observed step heights caused by swelling of about 

103 A. 0 

Step heights produced in our samples were below 500 A. Efforts 

to determine step heights in ALl and AL2 by profilometry were un-

successful because of low swelling and rough surface finishes. The 

rough surface finish in these alloys was due to the second phase 

(precipitates). An example of the rough surface contour is shown in 

Figure 16. 

Other techniques have been published for determining step heights 

(23, 24) . In the present work, an interferometer was used to make 

precise determinations of small step heights . The interferometer (the 

Zei ss Interference Microscope) makes use of a thallium vapor lamp 
0 

(monochromatic light source of wave length A = 5400 A) to establish the 

interference patterns . The interferometer ' s 60X magnification makes it 

possible to recognize minute surface structures and to evaluate them 

by means of superimposing light interference bands of these features . 

The depth measuring range of this instrument is about 0 . 01µ to 2µ . 

White or monochromatic light can be used . 

The phenomenon , which appears when two (or more) light waves are 

superimposed , is called "interference of light". Only light waves which 

have the same direction and frequency of vibration can be superimposed . 

The wave trains emit t ed by a light source are of finite lengt h ; there-
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(a) Sloam Dektak trace of pos t bombarded AL2 
(T1 = 570°C) ve r tical magnification l x 106 X, 
horizontal magnification SOOX. (Arrows indicate 
the approximate locat ion of where the s t ep 
height should be . ) 

Figure 16: Surface contour of pos t bombarded AL2 using 4 MeV 
56pe2+ and 0.4 MeV 4He+ ions to produce a damage 
concentration of 100 dpa . 
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(b) Micrograph of pos t bombarded AL2 (Tr = 570°C) 
in which the shi elded regi on produced by the 
bar mask can easily be seen (SOX) . 

Figure 16: (continued) 
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fore, one can bring into interference only waves which are from a single 

light source . If one considers a glass wedge, such as the one in Figure 

17, to be illuminated by a monochromatic light source, dark bands are 

revealed upon examination. At I , a wave train strikes the wedge an d i s 

divided into two parts . One part of the light is reflected at the 

surface and the other part (say point A) penetrates the wedge and is 

reflected at the basal surface (disregard the part emitted there) . In 

Figure 17b, that portion of the wave containing point A coming from the 

basal surface has been reflected back and has just reached the upper 

surface of the wedge. During this time the original wave containing 

point A' has continued to travel so that A' strikes the upper surface 

of the wedge ; thus, the portions of the waves containing A and A' annul 

each other and at this point darkness prevails (Figure 17c) . At II, 

wave points B and B' follow the same sequences as those of points A and 

A'; however, this time the wave segments containing points B and B' fall 

on wave crests, amplifying each other, and greater brightness prevails . 

At III, the same conditions exist that were exper ien ced at I and again 

darkness prevails. It should be noted that the dif ference in height 

between I and III is exactly half a wave length of light (Figure 17b) . 

Another attractive feature to this t ype of instrument is that the wave 

length of light used (thallium) is finite and constant, eliminating 

the need for instrument calibrations. 

It is instructive at this point to include the optical design of 

the interferometer for a better understanding of the technique used 

in analyzing the step heights. Figure 18 shows only the construction 
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Figure 17: A schematic drawing of the princ iple of light 
interference produced in an optical interference 
microscope (interferometer). 
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Figure 18: Basic optical design of an optical interference 
microscope (interferome t e r). 
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principle and not the actual optical arrangement. The surface to 

be examined is illuminated by thallium light (i.e ., a monochromatic 

light sour ce) . Proceeding from the light source Q, the light passes 

via the illumination objective L and to prism P1 where the beam is 

divided. One part passes through plane G2 and object ive o2 to the 

sample t o be examined, P, and is reflected back again to prism P1 . 

The other part passes through P1 via G and objective 0, to a mirror 

Sv' and from there, after reflection, back to P1 . In the beam splitting 

prism P1 the two beams are superimposed upon each other and are re-

flected into the eyepiece. The surface of the sample examined appears 

magnified in the eyepiece while the two beams coming from P and S v 

generate interference bands. A interference micrograph of an AL2 

sample is shown in Figure 19. 

The method of determination of the swelling is illustrated in 

Figures 20a, 20b, and 20c. Prior to bombardment, a one-mil-thick sheet 

of molybdenum was placed across a portion of each samp le in order to 

shield a portion of the sample from the iron ion beam or the dual iron 

and helium beams . Figure 20a shows the interference bands as seen 

through the interference microscope (interferometer) using a thallium 

vapor lamp as a light source . Indicated in Figure 20b are the locations 

of the masked and unmasked r egions of the sample. As can be seen from 

the insert in Figure 20c, the edge of fringe 1 in the masked region 

(represented by AA) shifts to A'A' in the unmasked region. Similarly, 

the edge of fringe 2 in the masked and unmasked regions is rep r esented 

by BB and B'B', respectively . In the insert of Figure 20c, BB is pro-
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Figure 19A: post bombarded AL2 (Ti = 570°C , 99 DPA) as 
viewed in an interferometer without super-
imposed interference bands . 

Figure 19B: post bombarded AL2 (Ti = 570°C, 99 DPA) as 
viewed in an interferometer with superimposed 
interference bands. 
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Figure 20A : Interference bands as observed in an interference 
microscope using a thallium vapor lamps as light 
source . 
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Figure 208 : Same field as shown in Fig . 2A , but identifying 
the masked and unmasked regions . 



www.manaraa.com

59 

Fi gure 20C : Same fie ld as shown in Fi gs . 2A and 2B , illustrating 
the method of determination of the step height and 
swelling . 
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jected from the masked region into the unmasked region and the pro-

jection of BB is used as a reference for measuring distances b and b ' , 

b being the distance between AA and BB and b ' the distance between 

A'A' and the projected BB . The step height, h, is calculated from the 

following relationship: 

h = [(b'-b)/b']A/2 

where A/2 is one-half the wave length of the thallium light source 
0 

(i.e . , 2700 A) . The distances b' and b were measured directly from 

the photographs, such as shown in Figures 20a, b, and c, to within 

+o . 005 inches. Approximately 3-5 locations a long the masked-unmasked 

interface were used and the average step height, h, was calculated . 

Tables 4 and 5 give the h values obtained and also the standard 

deviations (25) 

where h. r efers to an individual determination and N is the nlllllber [3-5) 
l. 

of determinations fo r a given sample . The average standard deviation 
0 

corresponds to about 15-20 A. 
b. v Swelling is counnonly expressed as a r elative change in volume, -v-· 

0 

Percent swelling is calculated f rom the step height in A units from the 
0 

empirical relation, 1% peak swelling = 60 A s t ep he i ght, as determined 

by Johnston et al . (9) . 
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Table 4. Irradiation conditions and swelling results for ALI and AL2 without and with 
0 . 1% Y, bombarded with 4 MeV 56Fe2+ ions only 

Displacement He Average Standard 
Irradiation Concentration Implanted Step 0 Deviation Swelling 

Sample Temp (Co) (dpa) (appm) Height (A) 
0 (%) (A) 

AL! 505 108 0 a 

" 572 106 " 147 12 2.5 
II 656 115 " 79 26 1.3 
II 716 118 " 40 24 0.6 

ALl+-0.1% y 581 108 " 
" 605 133 II 111 26 1.8 "' ...... 
" 653 128 II 83 15 1.4 

" 723 131 II 

AL2 513 95 " 
" 577 89 " 231 9 3.9 

" 649 91 II 123 12 2.1 
II 723 88 " 

AL2+0.1% y 509 103 " 
II 567 95 II 187 20 3 . 1 

" 646 93 II 67 11 1.1 
II 749 98 " 54 3 0 . 9 

a Not detectable. 
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Table 5 . Irradiation conditions and swelling results for AL! and AL2 without and with 
0.1% Y, bombarded simul t aneously with 4 MeV 56Fe2+ and 0.4 MeV 4He+ ions 

Displacement He Average Standard 
Irradiation Concentration Implanted Step 0 Deviation Swelling 

(Co) (dpa) (appm) Height (A) 0 (%) Sample Temp (A) 

AL! 499 110 65 125 10 2. 1 
II 576 111 68 343 8 5. 7 
II 651 124 66 187 11 3 .1 
II 728 121 65 136 13 2.3 

ALl+o .. 1% y 552 123 65 183 33 3.1 
II 607 128 68 248 29 4.7 

°' II 664 118 66 188 16 3.1 N 

II 743 139 65 161 30 2.7 

AL2 502 83 65 112 18 1. 9 
II 570 99 68 466 20 7. 7 
II 643 76 66 169 20 2.8 
II 725 79 65 83 27 1.4 

AL2+o.1% y 507 105 65 121 5 2 .0 
II 582 117 68 246 16 4 . 1 
II 634 97 66 219 33 3 . 7 
II 728 107 65 155 29 2. 6 
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IV. RESULTS 

Post-bombardment analyses were conducted on ALl and AL2 undoped 

and doped (0.1% Y) samples. Irradiation conditions and swelling results 

for these bombardments are listed in Tables 4 and 5. 

For heavy-ion (i.e., 4 MeV 56Fe2+ ions, Figure 21) bombardment 

only, the peak swelling (at 572°C) in undoped ALl was 2.5%, whereas 

the peak swelling (at 605°C) in yttrium-doped ALl was 1.8%. Thus, the 

addition of 0.1% Y caused a 28% decrease in the peak swelling in ALl. 

Furthermore, Figure 21 shows the peak swelling (at 577°C) for undoped 

AL2 to be 3.9%, whereas the peak swelling (at 567°C) for yttrium-doped 

AL2 was 3 . 1% . Thus, the addition of 0.1% Y produced a decrease of 

about 20% in the peak swelling for ALl . 

For 4 MeV 56Fe2+ ion bombardments with the coimplantation of 

helium by a 0.4 MeV 4He+ ion beam (Figure 22), it was observed that the 

peak swelling was 5.7% and 4.7% (at 576°C and 607°C, respectively) for 

undoped and yttrium-doped ALl, respectively, giving rise to about a 

17% decrease in swelling due to the 0.1% Y addition. Likewise, the 

yttrium addition to AL2 decreased peak swelling from 7.7% (at 570°C) 

in the undoped sample to 4.1% (at 582°C) in the doped sample, which 

amounts to a decrease of about 47% in the peak swelling for AL2. 

The effects of simultaneously implanting helium during heavy- ion 

bombar dment are illustrated in Figures 23 and 24. The coimplantation 

of helium in ALl (Figure 23) increased the peak swelling from 2 .5% to 

5.7% and from 1 . 8% to 4.7% in undoped and doped samples, respectively. 
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Thus, coimplanted helium increased the peak swelling by factors of 2 . 3 

and 2.6 in the undoped and doped samples, respectively. As for AL2, 

Figure 24 shows that coimplantation of helium resulted in peak swelling 

increases from 3. 9% to 7.7% in the undoped samples and from 3.1% to 

4.1% in the doped samples. One can conclude from this that coimplanted 

helium increased swelling in AL2 by factors of 2.0 and 1 . 3 for undoped 

and doped samples, respectively. 

It should be noted that in all cases where similar sample com-

parisons are made (i.e., undoped with undoped and doped with doped) and 

where bombardment conditions were similar (i.e., single with single 

beam and dual with dual beam) , ALl showed less peak swelling than did 

AL2. It is difficult to draw conclusions concerning shifts in peak 

swelling temperatures due to helium implantations or yttrium additions. 

It· is also interesting to note that samples exhibiting the greatest 

peak swelling do not necessarily exhibit greater swelling than other 

samples at other temperatures. One example of this can be seen in 

Figure 22. AL2 swelled the greatest at peak swelling temperatures, 

while at all other temperatures it swelled the least. 



www.manaraa.com

69 

V. DISCUSSION 

The addition of 0.1% yttrium decreased peak swelling in ALl and 

AL2. It is postulated that yttrium, acting as an oversized sub-

stitutional impurity, traps vacancies, thus increasing the likelihood 

of a mobile interstitial finding and recombining with the vacancy, 

which ultimately decreases void swelling. The trapping of vacancies 

instead of interstitials by yt trium appears reasonable because a 

vacancy-solute atom complex has a lower energy than an isolated 

vacancy and isolated solute a tom, when the solute atom is oversized . 

Also, it is widely observed that void formation is enhanced when gas 

atoms are present (26-29), and Farrell (26) states that substitutional 

impurities lessen this effect of gas atoms by decreasing the critical 

fluence for void formation. Three reasons for the effect of sub-

stitutional solutes given by Farrell (26) are: 

1. Solute trapping of point defects increases the probability 

of interstitial-vacancy recombination. 

2. Solute atoms segregate at sinks fo r point defects, reducing 

the sink capture efficiencies. 

3. The interstitial-vacancy separation distance in displacement 

cascades is reduced when solute atoms are present. 

Another possible effect of the yttrium addition could be the for-

mation of a second phase, which segregates into stringers parallel to 

the rolling direction. This is illustrated in Figure 25 and 26 , which 

show an increased amount of stringers in ALl and AL2 with increasing 
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Figure 25: Micrographs of ALl showing the increase i n the 
formation of second phase stringers parallel to 
the rolling direction with increases in y ttrium 
content. 

(a) ALl undoped (lOOX) 

(b) ALl doped with 0.1% yttrium (lOOX) 

(c) ALl doped with 0.3% yttrium (lOOX) 
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Figure26: Micrographs of AL2 showing the increase in the 
formation of the second phase s tringers parallel 
to t he r olling di r ection wi t h i ncr eases in ytt r i um 
content . 

(a) AL2 undoped (lOOX) 

(b) AL2 doped with 0.1 % yttrium (lOOX) 

(c) AL2 doped with 0.3 % ytt r ium (lOOX) 
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yttrium content. Roberts ~ al . (30) observed such stringers in an 

Fe-15% Ni-4% Al alloy doped with 0.86% Y. The stringers had the 

composition YFe9 . Likewise, the studies of Francis (6) on a niobium 

stabilized Fe-20% Cr-25% Ni steel doped with 0.7% Y resulted in an 

yttrium distribution in the steel consisting of second phase particles 

[Y(Ni,Fe) 9 and YNi5 ] within an austenitic matrix. 

Studies on Fe-Ni-Cr alloys have indicated: 

1. The higher the Ti/Al ratio, the greater the resistance 

of the alloy to swelling (31). 

2. For Ni ion bombardments, the swelling decreases with 

increasing Ni concentration up to 40-45% (3). 

Based on the above, one would have expected AL2 to have swelled less 

than AL!; however, this was not observed. The peak swelling f or AL! 

was lower than that for AL2 in the present study. 

Generally, the less pure an alloy is, the greater is its resistance 

to irradiation damage. Not all metals exhibit radiation-induced void 

swelling. The nucleation of voids can be combated by increasing the 

recombination of interstitial-vacancy pairs or by storing excess 

vacancies in dislocation loops (26). Zr and Ti are two outstanding 

examples of metals that have not exhibited void swelling for the 

highest fluences employed. AL! contains higher concentrations of these 

two elements than does AL2. Ti and Si retard cavitation and dislocation 

loop evolution, reducing vacancy aggregation into voids and absorption 

of excess interstitials into dislocation loops, thus promoting inter-

stitial-vacancy recombination. 
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The coimplantation of 0.4 MeV 4He+ ions increased the peak swelling 

for both undoped and doped ALl and AL2. Cavity nucleation and the 

formation of dislocation structures are drastically enhanced by the 

inert gas He (26). On an atom-for-atom basis, He is a stronger promoter 

of cavity nucleation than is H, 0, or N. 

While this thesis deals with the coimplantation of He, the method 

by which He is injected drastically affects swelling results (26-29). 

Cavity nucleation is overstimulated and there is a different temperature 

response of swelling when He is preimplanted (26). 

Hall (27) suggests that dislocation loops are formed by inter-

stitial clusters while vacancies and He form cavities. The presence of 

He stabilizes vacancy clusters and affects cavity nucleation in three 

ways . First, a sufficient number of vacancy - He pairs form early 

during irradiation, and cavity formation shifts to lower fluences than 

would have occurred in the absence of the inert gas. Secondly, coim-

planted He raises the upper temperature for swelling by prolonging 

survival of vacancies (26). Finally, cavity number densities increase 

with increasing gas production rates at fixed times (27). 

The presence of He will modify dislocation structure evolution, 

if present in sufficient quantities during loop nucleation periods 

(29). Interstitial clusters form dislocation loops which preferen-

tially absorb interstitials, leaving excess vacancies, thus increasing 

void swelling. Collision cascades collapse into loops annihilating 

some vacancies prior to the loop being consumed by interstitials (29) . 

Surviving vacancies are then free to migrate and coalesce at gas clusters. 
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VI. SUMMARY 

Candidate Liquid Metal Fast Breeder Reactor c ladding a l loys ALl 

(Fe-26% Ni-9% Cr) and AL2 (Fe-35% Ni-12% Cr) without and with the 

addition of 0.1% yttrium were bombarded by 4 MeV 56Fe2+ ions without and 

with s imultaneous bombardment by 0 . 4 MeV 4He+ ions. These bombardments 

were conducted at various irradiation temperatures to determine the 

effec t of yttrium on void swelling. The addition of yttrium decreased 

peak swelling for 4 MeV 56Fe2+ ion bombarded ALl and AL2 by 28% and 20% , 

respectively . In all cases where similar sample comparisons were made 

(i.e ., undoped with undoped and doped with doped) and whe r e bombardment 

conditions we r e s imilar (i.e ., single with singl e beam and dual with dual 

beam), ALl showed less peak swelling than did AL2 . Si multaneously im-

planting helium during heavy-ion bombardment increased peak swelling in 

undoped and doped AL! by factors of 2 . 3 and 2 . 6, respectively . I t was 

a lso obse r ved that the coimplantation of helium in undoped and doped AL2 

i nc r eased peak swell i ng by factors of 2 . 0 and 1. 3 , r espectivel y . No con-

clusions were drawn with r espec t to s hifts in peak swelling t emperatures 

due t o yttrium additions or helium implanta tions. 
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